Crystal Chemistry of MSeO_{3} and $M \mathrm{TeO}_{3}(\mathrm{M}=\mathrm{Mg}, \mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$, and Zn)

KAY KOHN,* KATSUHIKO INOUE, $\ddagger+$ OSAMU HORIE,*§ AND SYUN-ITI AKIMOTO $\dagger * *$
* Department of Physics, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 160, Japan, and
\dagger Institute for Solid State Physics, The University of Tokyo, Minato-ku, Tokyo 160 Japan

Received December 17, 1975

Abstract

New selenites and tellurites $\mathrm{MgSeO}_{3}, \mathrm{MnSeO}_{3}, \mathrm{CoSeO}_{3}, \mathrm{NiSeO}_{3}, \mathrm{CuSeO}_{3}, \mathrm{MnTeO}_{3}, \mathrm{CoTeO}_{3}$, and NiTeO_{3} were synthesized under high pressures and temperatures. All the compounds are isomorphous and their crystal system is orthorhombic. Structure analyses were carried out for all the selenites and CoTeO_{3}. The structure is described as a salt of M^{2+} and $\mathrm{SeO}_{3}{ }^{2-}$ or $\mathrm{TeO}_{3}{ }^{2-}$ ions or as a distorted perovskite. In these compounds an Se or Te atom is closely linked to three oxygen atoms to form a flattened trigonal pyramid. The features of this coordination are discussed. At low temperature, magnetic order appears in all the compounds containing iron group ions, among which CuSeO_{3} is a ferromagnet with the Curie temperature of $26^{\circ} \mathrm{K}$.

Introduction

Ions with a nonbonded s-electron pair such as $\mathrm{Tl}^{+}, \mathrm{Ge}^{2+}, \mathrm{Sn}^{2+}, \mathrm{Pb}^{2+}, \mathrm{As}^{3+}, \mathrm{Sb}^{3+}, \mathrm{Bi}^{3+}$, $\mathrm{Se}^{4+}, \mathrm{Te}^{4+}$, etc., play a peculiar role in crystal chemistry because of their high polarizability and strong preference to unusual stereochemistry. They are usually found in an asymmetric environment in crystals. In other words, such an ion A has a tendency to form a coordination polyhedron $A X_{n}$ lacking a center of symmetry. This is interpreted as a result of an off-center displacement of A in a coordination polyhedron due to the mixing of s and p orbitals (l). In another interpretation it is a result of

[^0]the formation of hybrid orbitals, one of which is occupied by nonbonded s-electrons (2). For instance, we will take an $A X_{3}$ group with a trigonal pyramidal shape, which is the most commonly found. In the first view, it is obtained by the displacement of the central atom A of a regular octahedron $A X_{6}$ along the three fold axis, while in the latter it is considered as a tetrahedral $A X_{3} E$ group, where one of the orbitals is occupied by a nonbonded pair E.

Although not a few structural data are present about the compounds containing these ions, systematic studies of their crystal chemistry are scarce. In addition, crystal structure with such an off-center distortion is possibly accompanied with various interesting physical properties. Possible relations to ferroelectricity (l) and nonlinear optical properties (3) have been discussed. New compounds with interesting structural and physical properties are therefore expected to be found in such crystal chemical studies.

The double oxides of the ions with a nonbonded s-electron pair and an iron group transition metal ion are of particular interest in view of possible interactions between dielectric and magnetic properties. In this connection, many works have been reported about the oxides containing Pb^{2+} and Bi^{3+} ions (4). Little has been known, however, about the other compounds. Recently, we succeeded in the high-pressure synthesis of several new compounds of the type MAO_{3}, where M is $\mathrm{Mg}, \mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$, or Zn and A is Se or $\mathrm{Te}(5,6)$. This paper reports the synthesis, stability fields, crystal structure, and magnetic properties of these compounds. The structure is discussed from two different standpoints, that is, it is at first described as a salt of M^{2+} and $A \mathrm{O}_{3}{ }^{2-}$ ions, and then as a double oxide of M^{2+} and A^{4+} ions. Discussions about the coordination of oxygen about Se or Te and the distortion and the tilt of an $M \mathrm{O}_{6}$ octahedron are given.

Experimental Details and Results

Synthesis

All the compounds were synthesized by direct solid-state reaction under high pressures and temperatures. Equilmolar amounts of a monooxide $M \mathrm{O}(M=\mathrm{Mg}, \mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$, or Zn) and SeO_{2} or TeO_{2} were intimately mixed and subjected to high pressures between 15 and 70 kbar in a tetrahedral-anvil type of high-pressure apparatus. Reaction temperatures were between 50 and $1000^{\circ} \mathrm{C}$. Lengths of run time were varied from 20 to 60 min , depending on the reaction temperature. Samples were quenched in the conventional
method under working pressure. In several runs, the mixture was prefired at $700^{\circ} \mathrm{C}$ in a sealed-off gold tube prior to the high-pressure reactions. No remarkable differences were discerned between the results of the runs with and without this prefiring. The quenched materials were well-crystallized powder with a specific color shown in the last row of Table I.

Stability Fields and Lattice Parameters

Quenched-products were examined by Xray diffraction with a diffractometer. The synthesis diagrams determined from the X-ray data are shown in Fig. 1. New compounds were obtained in the pressure range higher than certain boundaries, which are almost independent of temperature. All the observed diffraction lines of these high-pressure phases were well indexed on an orthorhombic cell. CuSeO_{3} was found to have two different forms in a lower pressure range. The products from the mixtures of $M \mathrm{O}$ ($M=\mathrm{Mn}, \mathrm{Co}$, or Ni) and TeO_{2} in lower pressure were two-phase mixtures of rocksalt type $M O$ and monoclinic $M_{2} \mathrm{Te}_{3} \mathrm{O}_{8}(7-9)$. As for the other compounds, low-pressure products could not be identified.

The final lattice parameters of the highpressure phase of $M A O_{3}$ compounds were obtained by accurate measurements of 2θ values for all the observed reflections between 25° and 130° and by least-squares refinements. $\mathrm{Fe} K \alpha_{1}$ radiation was used throughout. The results are given in Table I.

Intensity Measurements

Structure analyses were carried out for all the synthesized selenites $\mathrm{MgSeO}_{3}, \mathrm{MnSeO}_{3}$, $\mathrm{CoSeO}_{3}, \mathrm{NiSeO}_{3}, \mathrm{CuSeO}_{3}$, and ZnSeO_{3} and

TABLE I
Color and Final Lattice Parameters of MAO_{3}

| | MgSeO_{3} | MnSeO_{3} | CoSeO_{3} | NiSeO_{3} | CuSeO_{3} | ZnSeO_{3} | MnTeO_{3} | CoTeO_{3} | $\mathrm{NiTeO}{ }_{3}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a(\AA)$ | $5.9246(5)$ | $6.0945(4)$ | $5.9297(4)$ | $5.8803(3)$ | $5.9652(10)$ | $5.9231(4)$ | $6.1443(4)$ | $6.0169(3)$ | $5.9564(3)$ |
| $b(\AA)$ | $7.6663(8)$ | $7.8656(8)$ | $7.5954(4)$ | $7.5235(4)$ | $7.3265(13)$ | $7.6652(8)$ | $7.7866(7)$ | $7.5147(5)$ | $7.4986(4)$ |
| $c(\AA)$ | $5.0059(5)$ | $5.1460(4)$ | $5.0293(2)$ | $4.9394(2)$ | $5.2828(8)$ | $5.0400(6)$ | $5.4408(4)$ | $5.3266(3)$ | $5.2128(2)$ |
| Color | White | Light
 sepia | Violet | Yellowish | Green | White | Light | Violet | Yellowish |
| | | | green | | | sepia | | green | |

FIG. 1. (a) Synthesis diagram of $\mathrm{MgSeO}_{3}, \mathrm{MnSeO}_{3}$, $\mathrm{CoSeO}_{3}, \mathrm{NiSeO}_{3}$, and ZnSeO_{3}. (b) Synthesis diagram of CuSeO_{3}. (c) Synthesis diagram of MnTeO_{3}, CoTeO_{3}, and NiTeO_{3}. In these diagrams, solid circles (Mn), triangles (Co), squares (Ni), stars (Mg), double circles (Cu), and composite triangles (Zn) indicate a single-phase MeO_{3} or $M \mathrm{TeO}_{3}$.
the tellurite CoTeO_{3}, Small, nearly spherical crystals ($50 \sim 100 \mu \mathrm{~m}$ in diameter) were picked up from the run products quenched from above $950^{\circ} \mathrm{C}$. Their precession or Weissenberg photographs showed the systematic absence of the reflections $h k 0$ with $h=2 n+1$ and $0 k l$ with $k+l=2 n+1$, which is consistent with a space group $P n 2_{1} a$ or Pama.

The intensity measurements were made with a computer-controlled automatic RIGAKU four-circle diffractometer equipped with an Mo X-ray tube and a scintillation

counter. All the possible reflections in one octant in the region $2 \theta<80^{\circ}\left(100^{\circ}\right.$ in case of MgSeO_{3}) were recorded with the $2 \theta-\omega$ scan method. The background was measured at the start and the end of each interval of integration. Those reflections for which the integrated intensity was not at least three times as large as background were regarded as unobserved. The numbers of observed reflections are given in the last row of Table II. The integrated intensities were then converted to structure factors by applying Lorentz and polarization corrections.

Structure Refinements

Least-squares refinements were carried out with a local version of a full-matrix leastsquares program LINUS (IO). The atomic scattering factors for neutral atoms and the parameters for the anomalous dispersion were taken from the "International Tables for X-ray Crystallography" (1l). A weighting factor was taken as 1.0 for each reflection.

The centrosymmetric space group Pnma with a cell composed of a four-formula unit was assumed and atoms were placed in the following way:

M	in $4(b):$	0,	0,
A	$\frac{1}{2}$		
A	in $4(c):$	x,	$\frac{1}{4}$,
$O(1)$	in $4(c):$	x,	$\frac{1}{4}$,
$O(2)$	in $8(d):$	x, y,	z.

The starting positional parameters for CoSeO_{3}, which was at first analyzed, were those of LuFeO_{3}, reported by Marezio, Remeika, and Dernier (12). In other selenites, the final values of CoSeO_{3} were used as the starting parameters. For CuSeO_{3} and CoTeO_{3} similar values were used, but the sign of the

KOHN ET AL.
TABLE II
Final Atomic Coordinates and R Factor

		MgSeO_{3}	MnSeO_{3}	CoSeO_{3}	NiSeO_{3}	CuSeO_{3}	ZnSeO_{3}	CoTeO_{3}
A	x	0.0234	0.0257	0.0229	0.0207	0.0407	0.0266	-0.0103
	z	-0.0178	-0.0172	-0.0170	-0.0189	0.0029	-0.0161	-0.0131
O (1)	x	0.0700	0.0798	0.0720	0.0722	0.0791	0.0793	0.0499
	z	0.3199	0.3089	0.3206	0.3234	0.3315	0.3184	0.3375
O(2)	x	0.1823	0.1794	0.1832	0.1831	0.2023	0.1838	0.1828
	y	0.0795	0.0836	0.0778	0.0754	0.0728	0.0785	0.0655
	z	0.8621	0.8673	0.8663	0.8599	0.9066	0.8660	0.8660
R		0.042	0.034	0,026	0.028	0.069	0.091	0.047
Number of observed reflections		704	603	470	465	631	472	658

TABLE III
Final Thermal Parameters $\left(\times 10^{4}\right)$

		MgSeO_{3}	MnSeO_{3}	CoScO_{3}	NiSeO_{3}	CuSeO_{3}	ZnSeO_{3}	CoTeO_{3}
M	$\beta_{11}{ }^{\text {a }}$	48.1	48.1	41.8	36.0	43.6	69.1	19.4
	β_{22}	20.7	31.2	23.9	17.1	30.3	29.0	22.0
	β_{33}	48.5	63.1	61.2	41.2	53.6	102.2	48.3
	β_{12}	0.5	2.4	3.0	-0.1	9.0	5.1	0.2
	β_{23}	-4.4	-2.6	-5.9	-0.3	-25.7	-20.7	-7.5
	β_{31}	0.5	3.6	-0.9	-0.3	-14.0	-2.2	-5.3
A	$\beta_{\text {S }}$	28.2	34.4	28.9	24.7	37.6	42.2	13.9
	β_{22}	15.5	27.4	20.3	16.2	26.1	27.2	20.7
	β_{33}	27.1	40.2	49.0	29.7	29.1	70.7	31.1
	β_{13}	-1.2	-3.2	-2.6	-2.7	7.0	-1.9	0.9
O (1)	β_{11}	47.9	60.4	48.7	52.9	74.9	16.4	45.6
	β_{22}	18.8	39.2	32.6	12.8	43.6	26.3	6.9
	β_{33}	36.3	37.7	48.4	35.8	22.9	133.3	47.5
	β_{13}	3.7	-15.6	2.1	6.5	9.1	39.8	-14.1
O(2)	β_{11}	47.3	54.4	46.4	36.5	43.6	75.2	23.3
	β_{22}	23.4	33.8	24.6	20.1	29.6	28.6	24.3
	β_{33}	44.0	62.3	68.4	55.8	55.6	76.8	68.1
	β_{12}	1.8	14.9	11.4	9.4	10.3	19.6	2.5
	β_{23}	6.7	0.3	5.5	-4.0	10.1	-0.9	1.9
	β_{31}	-11.6	-16.7	-10.5	-12.6	6.0	-6.8	-24.9

[^1]parameter z of Se or x of Te was reversed. In the last several cycles, 29 parameters, the scale factor, the 7 positional parameters, the

20 thermal parameters, and the extinction parameter were varied. The R factors less than 0.091 were obtained in all the crystals analysed.

The final positional and thermal parameters are given in Tables II and IIII, respectively.

Magnetic Properties

Magnetic measurements of powder samples of $\mathrm{MnSeO}_{3}, \quad \mathrm{CoSeO}_{3}, \quad \mathrm{NiSeO}_{3}, \quad \mathrm{CuSeO}_{3}$,

Fig. 2. Temperature dependence of the inverse susceptibility and the magnetization in the magnetic field of 9.59 kOe of MnSeO_{3} (a), CoSeO_{3} (b), and NiSeO_{3} (c).

Fig. 3. Temperature dependence of the inverse susceptibility and the magnetization in the magnetic field of 9.59 kOe of CuSeO_{3}.

Fig. 4. Temperature dependence of the inverse susceptibility and the magnetization in the magnetic field of $9.59 \mathrm{kOe}\left(10.0 \mathrm{kOe}\right.$ in case of CoTeO_{3}) of $\mathrm{MnTeO}_{3}(\mathrm{a}), \mathrm{CoTeO}_{3}(\mathrm{~b})$, and $\mathrm{NiTeO}_{3}(\mathrm{c})$.
$\mathrm{MnTeO}_{3}, \mathrm{CoTeO}_{3}$, and NiTeO_{3} were made in the applied magnetic field up to 10 kOe . A vibrating sample magnetometer and a pen-dulum-type magnetometer were used. The results are given in Figs. 2, 3, and 4. The behaviors in higher temperature are well described by the Curie-Weiss law

$$
\chi=\frac{N \mu_{\mathrm{B}}^{2} p_{\mathrm{eff}}^{2}}{3 k} \cdot \frac{1}{T-\theta_{\mathrm{p}}}
$$

with the constants given in Table IV. The effective Bohr magneton number $p_{\text {eff }}$ takes a typical value in Mn^{2+} and Co^{2+} compounds and CuSeO_{3}, but the values in Ni^{2+} compounds are somewhat higher than the usual one. All the compounds except CuSeO_{3} become antiferromagnetic below a certain Néel temperature T_{N} given in the third row of Table IV. Weak ferromagnetism appears at T_{N} in these compounds except CoSeO_{3}. In MnSeO_{3} and CoTeO_{3}, the saturation could not be attained in our measurements. Remarkable magnetic field annealing effect was observed in MnSeO_{3} : the magnetization during heating from $4.2^{\circ} \mathrm{K}$ in the magnetic field of 9.6 kOe is quite different from that after cooling from above T_{N} in the applied field.

TABLE IV
Magnetic Properties of MAO_{3}

	MnSeO_{3}	CoSeO_{3}	NiSeO_{3}	CuSeO_{3}	MnTeO_{3}	CoTeO_{3}	NiTeO_{3}
$p_{\text {eff }}$	5.9	5.1	3.7	1.8	6.2	4.9	3.4
$\theta\left({ }^{\circ} \mathrm{K}\right)$	-80	-90	-250	35	-130	-120	-270
$T_{N}\left({ }^{\circ} \mathrm{K}\right)$	51 ± 1	49 ± 1	98 ± 1	26 ± 2	61 ± 1	78 ± 2	125 ± 2

CuSeO_{3} is a ferromagnet with the Curie temperature of $26^{\circ} \mathrm{K}$. The magnetization at $4.2^{\circ} \mathrm{K}$ in the magnetic field of 9.6 kOe is $24.1 \mathrm{emu} / \mathrm{g}$ and still unsaturated. If all the Cu^{2+} moments give rise to magnetic ordering, the saturation magnetization at $0^{\circ} \mathrm{K}$ will be $29.3 \mathrm{emu} / \mathrm{g}$.

Description of the Structure and Discussion

The interatomic distances and angles were calculated with the program DAPH or RSDA-4 (13). They are given in Tables V, VI, and VII. Figures 5 and 6 show the projections of the structure of CoSeO_{3} and CoTeO_{3} on the ac plane. The difference is found in the direction of the shift of Se or Te from the ideal position $0, \frac{1}{4}, 0$. All the other selenites have a similar structure. Oxygen octahedra surrounding an M atom are outlined in the figures.

This structure can be described from two different standpoints. At first it is considered to be a salt of M^{2+} and $\mathrm{AO}_{3}{ }^{2-}$ ions. They are situated at the points of a body-centred lattice alternatively. An ${A O_{3}}^{2-}$ is a trigonal pyramid with three oxygens at the corners of basal triangle and an A atom at the fourth corner. Each M^{2+} is linked to three $\mathrm{AO}_{3}{ }^{2-}$ ions. As observed from Table V , an SeO_{3} group has almost the same shape and size in all the $M \mathrm{SeO}_{3}$ compounds reported here. In $\mathrm{VSe}_{2} \mathrm{O}_{6}$ (14), $\mathrm{CuSeO}_{3} 2 \mathrm{H}_{2} \mathrm{O}$ (15), and $\mathrm{ZnSe}_{2} \mathrm{O}_{5}$ (16), the only selenites with the published structure data, similar SeO_{3} groups with an average Se-O distance of $1.725,1.757$, or $1.727 \AA$, respectively, are observed. These evidences support the view that an SeO_{3} group is an independent unit in the structure. $\mathrm{A}_{\mathrm{TeO}}^{3}$ group in CoTeO_{3} has a similar shape, but it is somewhat more flattened than SeO_{3} groups and an average TeO_{3} in other tellurites

TABLE V
Interatomic Distances (\AA) and Angles (${ }^{\circ}$) between an A Atom and the Neighboring Oxygen Atoms

	MgSeO_{3}	MnSeO_{3}	CoSeO_{3}	NiSeO_{3}	CuSeO_{3}	ZnSeO_{3}	CoTeO_{3}
Aii-O(1)i	1.712	1.710	1.719	1.718	1.751	1.717	1.902
Aii-O(1)iv	2.863	2.921	2.844	2.809	2.889	2.841	2.807
Aii-O(1)iii	3.327	3.484	3.336	3.263	3.554	3.372	3.478
Aii-O(1)ii	3.386	3.544	3.395	3.383	3.329	3.433	3.498
Aiii-O(2)ii ($\times 2$)	1.720	1.716	1.716	1.731	1.695	1.723	1.920
Aii-O(2vi $\times 2)$	2.914	3.007	2.869	2.837	2.815	2.916	2.704
Aii-O(2)iii $(\times 2)$	2.961	3.068	2.969	2.916	3.231	2.996	2.978
Aii-O(2)vii $(\times 2)$	3.610	3.746	3.591	3.539	3.104	3.607	3.149
Average $A-\mathrm{O}$ distance	1.717	1.714	1.717	1.727	1.714	1.724	1.914
in $A \mathrm{O}_{3}$ group							
O(1)ii-Aii-O(2)v	104.9	103.5	104.0	104.1	104.9	104.1	102.4
O(2)v-Aii-O(2)vi	95.1	95.3	95.1	95.0	95.1	95.4	114.6

TABLE VI
Interatomic Distances (\AA) and Angles (${ }^{\circ}$) in $M \mathrm{O}_{6}$ Octahedra

	MgSeO_{3}	MnSeO_{3}	CoSeO_{3}	NiSeO_{3}	CuSeO_{3}	ZnSeO_{3}	CoTeO_{3}	LuFeO_{3}
Mii-O(1)i	2.158	2.252	2.140	2.116	2.090	2.177	2.090	2.008
Mii-O(2)vi	2.196	2.281	2.214	2.154	2.521	2.223	2.292	2.024
Mii-O(2)vii	2.095	2.172	2.076	2.067	1.919	2.089	2.096	1.997
$\mathrm{O}(1) \mathrm{i}-\mathrm{O}(2) \mathrm{vii}$	2.929	3.021	2.885	2.845	2.729	2.897	2.869	2.793
$\mathrm{O}(1) \mathrm{i}-\mathrm{O}(2) \mathrm{vi}$	3.073	3.194	3.055	3.011	3.161	3.107	2.958	2.884
$\mathrm{O}(1) \mathrm{i}-\mathrm{O}(2) \mathrm{ii}$	3.085	3.216	3.104	3.029	3.385	3.116	3.239	2.779
$\mathrm{O}(1) \mathrm{i}-\mathrm{O}(2) \mathrm{iii}$	3.085	3.232	3.076	3.067	2.942	3.132	3.049	2.908
$\mathrm{O}(2) \mathrm{vi}-\mathrm{O}(2) \mathrm{vii}$	3.168	3.278	3.180	3.134	3.411	3.190	3.252	2.845
$\mathrm{O}(2) \mathrm{vi}-\mathrm{O}(2) \mathrm{iii}$	2.897	3.015	2.883	2.829	2.905	2.904	2.952	2.842
Average $M-\mathrm{O}$ distance	2.150	2.235	2.143	2.112	2.177	2.143	2.159	2.010
Average $\mathrm{O}-\mathrm{O}$ distance	3.040	3.159	3.103	2.986	3.089	3.058	3.053	2.842
$\mathrm{O}(1) \mathrm{i}-\mathrm{Mii}-\mathrm{O}(2) \mathrm{yii}$	87.0	86.1	86.3	85.7	85.7	85.5	86.5	87.7
$\mathrm{O}(1) \mathrm{i}-\mathrm{Mii}-\mathrm{O}(2) \mathrm{iv}$	89.8	89.6	89.1	89.7	86.0	89.8	84.8	87.9
$\mathrm{O}(2) \mathrm{vii}-\mathrm{Mii}-\mathrm{O}(2) \mathrm{vi}$	95.1	94.8	95.6	95.9	99.5	95.4	95.6	90.1

TABLE VII
Angles (${ }^{\circ}$) Specifying the Tilt of $M \mathrm{O}_{6}$ Octahedra

| | MgSeO_{3} | MnSeO_{3} | CoSeO_{3} | NiSeO_{3} | CuSeO_{3} | ZnSeO_{3} | CoTeO_{3} | LuFeO_{3} |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| θ^{a} | 14.2 | 15.2 | 14.4 | 14.1 | 15.0 | 14.6 | 13.5 | 10.1 |
| ϕ^{b} | 11.2 | 112.7 | 11.9 | 112.3 | 115.2 | 113.6 | 107.0 | 22.2 |
| ψ^{c} | 20.8 | 21.6 | 21.5 | 20.3 | 29.0 | 21.5 | 22.4 | -12.9 |
| $M_{\text {ii-O(1)i-Mi }}$ | 125.3 | 121.7 | 124.5 | 125.4 | 122.4 | 123.5 | 128.0 | 140.7 |
| M ii-O(2)vii-Miii | 129.3 | 127.6 | 129.4 | 130.9 | 127.1 | 129.4 | 132.5 | 142.4 |

[^2]$(17,18)$. The features of these $A \mathrm{O}_{3}$ groups will be discussed later.

From another view, MAO_{3} crystals have a distorted perovskite $A B X_{3}$ structure, in which A^{4+} ions occupy the larger A cation sites and M^{2+} the B sites. This structure is composed of $B X_{6}$ octahedra, which are linked together at the corners to form a three-dimensional network, and A cations in the cavities of this network. In an ideal perovskite, an A cation is surrounded by 12 anions X at an equal
distance. In the selenites and tellurites reported in this paper, however, an A^{4+} ion with a relatively small size and strong covalent character attracts 3 out of 12 oxygens to the distance of contact, while the others are far apart and linked to other A^{4+} ions. Thus an $A^{O_{3}}$ group rather than A^{4+} ion surrounded by 12 oxygens is a natural component of the structure. On the other hand, MO_{6} octahedra are easily distinguished, as shown in Figs. 5 and 6 . The displacement of oxygens toward

Fig. 5. The projection of a unit cell of CoSeO_{3} on the ac plane. The heights of the atoms are in ångströms. An oxygen-metal octahedron is outlined.

Fig. 6. The projection of a unit cell of CoTeO_{3} on the a c plane. The heights of the atoms are in ångströms. An oxygen-metal octahedron is outlined.
an A^{4+}, however, cause an unusually large distortion and tilt of these octahedra, ${ }^{1}$
${ }^{1}$ The tilt of octahedra in perovskite structure is usually discussed in connection with the tolerance factor t. If we take the "ionic radii"' of Se^{4+} and Te^{4+} as the difference between the average distance to the 12 neighboring oxygens and the radius of O^{2-}, we get the value of t nearly equal to 1.0 . But such a discussion is not appropriate here, since ionic radius loses a definite meaning for Se^{4+} and Te^{4+} ions with a strong covalent character.
which are specified by the interatomic distances and angles in Tables VI and VII. The tilt angles θ and ϕ of an octahedron are the polar and azymuthal angles of the vector combining M to $\mathrm{O}(1)$ i with respect to the unit cell edges. The angle ψ is the one between the a-axis and the vector combining M to the midpoint of O (2)ii and $\mathrm{O}(2)$ vii. The parameters of LuFeO_{3}, which are taken as a representative example of perovskite oxides with tilted octahedra, are listed for the sake of comparison. It is noticeable that the distortion in an octahedron itself is quite small in orthoferrites and many other orthorhombic perovskite oxides. In spite of a large distortion, the average $M-\mathrm{O}$ distances are well understood on the conception of ionic radii with the exception of CuSeO_{3}. This trend shown in Fig. 7, indicates that the origin of the distortion does not come from an M^{2+} ion itself, which tends to retain its octahedral surroundings. This is also seen in the fact that the average $\mathrm{Se}-\mathrm{O}$ distance in the SeO_{3} group of the $M \mathrm{SeO}_{3}$ is almost independent of the radius of M^{2+}. A larger distortion of an octahedron is observed in CuSeO_{3}, in which three body diagonals of the octahedron differ from each other by about 20%. This is due to the preference of a Jahn-Teller Cu^{2+} ion for nonoctahedral bonding. The distortions of the same order of magnitude also have been observed in KCuF_{3} (19) and $\mathrm{CuTe}_{2} \mathrm{O}_{5}$ (20).

Fig. 7. The average M - O distance in $M \mathrm{O}_{6}$ octahedra vs ionic radii of M^{2+} cations.

Fig. 8. Layer of octahedra in lower half of a unit cell projected on the $a c$ plane. (a) CoTeO_{3}, (b) LuFeO_{3}. Open circles are A cations (Te or Lu , respectively) at height $\frac{1}{4}$.

The tilt of an octahedron is commonly observed in orthorhombic perovskites. A definite feature in the $M A O_{3}$ compounds reported here is that the sense of the tilt is opposite to that in usual cases. This is clearly seen from Fig. 8 , in which a layer of octahedra in lower half of a unit cell is illustrated for CoTeO_{3} and LuFeO_{3}. The sense of the tilt in the former is well understood by considering the shift of oxygens toward Te. Figures 5, 6, and 8 show that tilts repeat alternatively from one octahedron to the next and therefore the $M-\mathrm{O}-M$ angle deviates from 180°. In the $M A O_{3}$ compounds they take a value around 125°, which is much smaller than those in ordinary perovskite oxides.

As concluded from the above discussion, deviation of $M \mathrm{SeO}_{3}$ and $M \mathrm{TeO}_{3}$ from an ideal perovskite is anomalously large and can be attributed to the strong preference of Se^{4+} and Te^{4+} ions for unusual stereochemistry. In this sense these compounds are situated on the midway between a salt and a double oxide containing two kinds of metal ions.

The coordination of oxygen around an ion with a nonbonded s-electron pair has been widely discussed. The most common configuration is an $A \mathrm{O}_{3}$ triangular pyramid or AO_{4} distorted bisphenoid, which are illustrated in Fig. 9. They have been considered as an $A \mathrm{O}_{6}$ octahedron, in which A is displaced along the threefold or twofold axis (I). In another
interpretation (3) they are tetrahedral $A \mathrm{O}_{3} E$ or bipyramidal $A \mathrm{O}_{4} E$ molecule where a nonbonded pair E is directed toward an empty corner. They exist in crystals as a discrete unit or form a more complicated group like $A_{2} \mathrm{O}_{5}, A_{2} \mathrm{O}_{6}, A_{3} \mathrm{O}_{8}$, etc., by having oxygens in common (18). The published structural data indicate that the $A-\mathrm{O}$ distances and the $\mathrm{O}-A \mathrm{O}$ angles take more scattered values, according as $A \mathrm{O}_{3}$ or $A \mathrm{O}_{4}$ units are grouped together in the higher degree. In other words, $A \mathrm{O}_{3}$ or $A \mathrm{O}_{4}$ units have more symmetric shape when they are isolated from each other. Since more dense structure requires more symmetric shape of its units, the structure with discrete $A O_{3}$ groups is expected for the high-pressure phase. In fact, the MAO_{3} compounds reported in this paper have discrete $A O_{3}$ groups. On the other hand, most selenites and tellurites of divalent iron group

Fig. 9. Coordination of oxygen around Se or Te atoms. (a) Trigonal pyramid AO_{3}. (b) Distorted bisphenoid AO_{4}.

TABLE VIII

Transition Metal Selenites and Tellurites Containing SeO_{3} or TeO T_{3} Groups

Substance	$A_{m} \mathrm{O}_{n}$ group	Interatomic distances ${ }^{\text {a }}$ (\AA)			Angles ${ }^{(\%)}$			Reference
		AO1	AO2	AO3	$\mathrm{O} 2-\mathrm{A}-\mathrm{O} 3$	$\mathrm{O} 3-\mathrm{A}-\mathrm{O} 1$	$\mathrm{O} 1-4-\mathrm{O} 2$	
VSe $\mathrm{F}_{2} \mathrm{O}_{6}$	$\mathrm{Se}_{2} \mathrm{O}_{5} \mathrm{Se}(1)$	1.70	1.71	1.77	96.0	100.6	100.5	14
	Se(2)	1.70	1.66	1.82	100.6	96.3	103.4	
$\mathrm{CuSeO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	SeO_{3}	1.72	1.77	1.72	98.5	96.0	98.5	15
$\mathrm{ZnSe}_{2} \mathrm{O}_{5}$	$\mathrm{Se}_{2} \mathrm{O}_{5}$	1.66	1.69	1.83	96.3	102.4	102.1	16
$\alpha \mathrm{TeVO}_{4}$	TeO_{3}	1.81	1.95	1.99	94.0	98.5	92.0	23
$\mathrm{Co}_{6} \mathrm{Te}_{5} \mathrm{O}_{16}$	$\mathrm{TeO}_{3} \mathrm{Te}(1)$	1.86	1.87	1.88	92.5	98.2	103.3	24
	$\mathrm{Te}(2)$	1.83	1.91	1.91	95.5	93.1	93.1	
	$\mathrm{Te}(3)$	1.86	1.86	1.90	100.4	97.1	97.1	
$\mathrm{CuTeO} 3 \cdot 2 \mathrm{H}_{2} \mathrm{O}$	TeO_{3}	1.81	1.88	1.88	96.3	98.2	102.1	25
$\mathrm{CuTe}_{2} \mathrm{O}_{5}$	$\mathrm{Te}_{2} \mathrm{O}_{5} \mathrm{Te}(1)$	1.88	1.88	1.93	91.0	92.8	94.6	20
CuTeO_{3}	$\mathrm{Te}_{2} \mathrm{O}_{5} \mathrm{Te}(2)$	1.89	1.89	1.86	95.6	95.6	92.7	28
ZnTeO 3	TeO_{3}	1.86	1.87	1.90	98.1	95.0	95.4	27
$\mathrm{Zn}_{2} \mathrm{Te}_{3} \mathrm{O}_{8}$	$\mathrm{Te}_{3} \mathrm{O}_{8} \mathrm{Te}(2)$	1.88	1.93	1.98	79.9	93.9	98.2	7

${ }^{\text {a }}$ The nomenclatures of distances and angles are shown in Fig 9(a).

TABLE IX
Transition Metal. Selenites and Tellurities Containing SeO_{4} or TeO T_{4} Groups

Substance	$A_{m} \mathrm{O}_{n}$ group	Interatomic distances ${ }^{\text {a }}(\AA)$				Angles ${ }^{\text {a }}$ (${ }^{\circ}$)		Reference
		AO1	AO^{2}	A03	$A \mathrm{O} 4$	O1-A-O2	$\mathrm{O} 3-\mathrm{A}-\mathrm{O} 4$	
$\mathrm{TiTe}_{3} \mathrm{O}_{8}$	$\begin{aligned} & \left(\mathrm{Te}_{3} \mathrm{O}_{8}\right)_{\infty} \\ & \text { network } \end{aligned}$	1.85	1.85	2.12	2.12	102.2	159.2	26
$\beta \mathrm{VTeO}_{3}$	$\mathrm{Te}_{2} \mathrm{O}_{6}$	1.85	1.87	2.02	2.20	95	147	29
$\mathrm{Co}_{6} \mathrm{Te}_{5} \mathrm{O}_{16}$	$\mathrm{TeO}_{4} \mathrm{Te}(4)$	1.89	1.92	2.05	2.05	112.6	150.5	24
$\mathrm{CuTe}_{2} \mathrm{O}_{5}$	$\mathrm{Te}_{2} \mathrm{O}_{5} \mathrm{Te}(1)$	1.86	1.87	2.02	2.40	99.0	166.6	20
CuTeO_{3}	$\mathrm{Te}_{2} \mathrm{O}_{5} \mathrm{Te}(2)$	1.96	2.32	1.88	1.88	105.7	176.3	28
$\mathrm{Zn}_{2} \mathrm{Te}_{3} \mathrm{O}_{8}$	$\mathrm{Te}_{3} \mathrm{O}_{\mathrm{s}} \mathrm{Te}(1)$	1.83	1.83	2.10	2.10	106.3	175.0	7

a The nomenclatures of distances and angles are shown in Fig. 9(b).
ions contain more complicated $\mathrm{Se}_{m} \mathrm{O}_{n}$ or $\mathrm{Te}_{m} \mathrm{O}_{n}$ groups as listed in Tables VIII and IX. Such a tendency is also noticed in some silicates synthesized at atmospheric and high-pressure conditions. Some pyroxenes or pyroxenoids with SiO_{4}-chain transform to spinel plus stishovite (e.g., $\mathrm{MgSiO}_{3}, \mathrm{FeSiO}_{3}$, CoSiO_{3}) or to garnet (e.g., MnSiO_{3}) at high pressures (21). It is well known that SiO_{4} groups are isolated in silicate spinel and garnet.

The ratio of metal to oxygen M / O in selenites and tellurites is larger when the $\mathrm{Se}_{m} \mathrm{O}_{n}$ or $\mathrm{Te}_{m} \mathrm{O}_{n}$ groups are more simple. Thus, we can expect to get the compounds with larger M / O ratio under high-pressure conditions. Since M ions often play an important role in determining physical properties of a crystal, we can conclude that high-pressure synthesis will be one of the useful tools in the crystal chemical research of new compounds
of the ions with nonbonded s-electron pair, such as selenites, tellurites, etc.

The paramagnetic Curie temperature and the Néel temperature of the $M \mathrm{SeO}_{3}$ and $M \mathrm{TeO}_{3}$ compounds reported in this paper generally decrease when we proceed from Mn to Ni along the row of the periodic table. This behavior is also observed widely in other magnetic oxides of iron group ions (22). The origin of ferromagnetic couplig in CuSeO_{3} is not clear at present. As far as we know, this is the first example of ferromagnetic oxides containing no magnetic ions other than Cu^{2+}.

Acknowledgments

We are grateful to Professor Y. Saito, Professor N. Morimoto, Dr. I. Kawada, and Professor J. Kobayashi and the members of their research groups for affording us the facilities of using their X-ray apparatuses and kind assistances in operating them. We also express our sincere gratitude to Professor F. Marumo and Dr. M. Konno. We could not have completed the structure analyses without their valuable advice. We are grateful to Professor Y. Matsui, Professor Y. Syono, and Dr. Y. Uesu for discussions about the crystal structures. The assistance of K. Asai and H . Suwa are heartily acknowledged. This work has been partly supported by a Grant-in-Aid for Fundamental Research from the Japanese Ministry of Education.

References

1. L. E. Orgel, J. Chem. Soc. 3815 (1959).
2. R. J. Gillespie, "Molecular Geometry," Van Nostrand, London (1972).
3. J. G. Bergman, Jr., G. D. Boyd, A. Ashkin, and S. K. Kurtz, J. Appl. Phys. 40, 2860 (1969).
4. For the review about these compounds, see G. A. Smolensky et al., "Ferroelectrics and Antiferroelectrics" (in Russian), Chap. 19, Izd. Nauka (1971).
5. K. Kohn, S. Akimoto, Y. Uesu, and K. Asai, J. Phys. Soc. Japan 37, 1169 (1974).
6. K. Kohn, S. Akimoto, K. Inoue, K. Asai, and O. Horie, J. Phys. Soc. Japan 38, 587 (1975).
7. K. Hanke, Naturwissenschaften 53, 273 (1966).
8. M. Trömel, D. Schmid, and Ziethen-Reichnach, Naturwissenschaften 57, 495 (1970).
9. G. Perez, F. Lasserre, J. Moret, and B. Frit, C. R. Acad, Sci. Paris 272C, 78 (1971)
10. P. Coppens and W. C. Hamilton, Acta Crystallogr. A26, 71 (1970).
11. "International Tables for X-ray Crystallography," Vol. III, Kynoch Press, Birmingham (1962).
12. M. Marezio, J. P. Remeika, and P. D. Dernier, Acta Crystallogr. B26, 2008 (1970).
13. T. Sakural, "Universal Crystallographic Computation Program System (UNICS) I" (in Japanese), pp. 76, 78, The Crystal. Soc. Japan, Tokyo (1967).
14. G. Meunier, M. Bertaud, and J. Galy, Acta Crystallogr. B30, 2834 (1974).
15. V. Gattow, Acta Crystallogr. 11, 377 (1958).
16. G. Meunier and M. Bertaud, Acta Ceystallogr. B30, 2840 (1974).
17. J. Zemann, Monatshefte für Chemie 102, 1209 (1971).
18. 19. D. Brown, J. Solid State Chem. 11, 214 (1974).
1. A. Okazaki and Y. Suemune, J. Phys. Sac. Japan 16, 176 (1961).
2. K. Hanke, V. Kupcik, and O. Lindquist, Acta Crystallogr. B29, 963 (1973).
3. A. E. Ringwood, Phys. Earth Planet. Interiors 3, 109 (1970).
4. K. Motida and S. Miyahara, J. Phys. Soc. Japan 28, 1188 (1970).
5. G. Meunier, J. Darriet, and J. Galy, J. Solid State Chem. 5, 314 (1972).
6. M. Trömel and Th. Scheller, Naturwissenschaf$\operatorname{ten} 57,495$ (1970).
7. A. Zemann and J. Zemann, Acta Crystallogr. 15, 698 (1962).
8. G. Meunier and J. Galy, Acta Crystallogr. B27, 602 (1971).
9. K. Hanke, Naturwissenschaften 54, 199 (1967).
10. O. Lindqvist, Acta Chem. Scand. 26, 1423 (1972).
11. G. Meunier, J. Darriet, and J. Galy, J. Solid State Chem. 6, 67 (1973).

[^0]: \ddagger On leave from Asada Fundamental Research Laboratory, Kobe Steel Ltd., Nada-ku, Kobe 657, Japan.
 § Present address: The Research Institute for Iron, Steel and Other Metals, Tohoku University, Sendai 980, Japan.
 ** Correspondence should be addressed to Syun-iti Akimoto, Institute for Solid State Physics, The University of Tokyo, Minato-ku, Tokyo 106, Japan.

[^1]: ${ }^{a}$ The anisotropic thermal parameters are the coefficients in the expression $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\right.\right.$ $\left.\left.2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$.

[^2]: ${ }^{\sigma} \theta$ is the angle between the b-axis and the vector $\overrightarrow{\mathrm{MiO}(1)}$.
 ${ }^{3} \phi$ is the azymuthal angle of the vector $\overrightarrow{M \mathrm{iO}(1)}$ measured from the a-axis.
 ${ }^{c} \psi$ is the angle between the a axis and the vector connecing M ii to the midpoint of O (2)ii and O (2)vi. Both ϕ and ψ are measured counter clockwise around the b-axis,

